ads 728x90

Showing posts with label High Temperature Adhesive. Show all posts
Showing posts with label High Temperature Adhesive. Show all posts

Wednesday, April 10, 2013



Portland cement

Main article: Portland cement

Cement is made by heating limestone (calcium carbonate) with small quantities of other materials (such as clay) to 1450 °C in a kiln, in a process known as calcination, whereby a molecule of carbon dioxide is liberated from the calcium carbonate to form calcium oxide, or quicklime, which is then blended with the other materials that have been included in the mix. The resulting hard substance, called 'clinker', is then ground with a small amount of gypsum into a powder to make 'Ordinary Portland Cement', the most commonly used type of cement (often referred to as OPC). Portland cement is a basic ingredient of concrete, mortar and most non-specialty grout. The most common use for Portland cement is in the production of concrete. Concrete is a composite material consisting of aggregate (gravel and sand), cement, High Temperature Cement and water. As a construction material, concrete can be cast in almost any shape desired, and once hardened, can become a structural (load bearing) element. Portland cement may be grey or white.
[edit]Energetically Modified Cement ("EMC Cement")


Proving Energetically Modified Cement's "self-healing" capabilities...



PHOTO A: Proving Energetically Modified Cement's "self-healing" capabilities. Mechanically-induced cracking in concrete comprising EMC Cement, caused by RILEM 3-point bending induced after ~3 weeks of water curing (September, 2012). Cracks had an average width of 150-200 μm.
The photo above depicts a concrete test-beam made from EMC Cement undergoing RILEM 3-point bending at Luleå University of Technology in Sweden (February, 2013). This treatment induces cracks so as to test for EMC Cement's "self-healing" capabilities.



PHOTO B: Former cracks in concrete comprising EMC Cement, taken 5 months after PHOTO A. The photograph shows that the former cracks had undergone a complete "self healing" process without any intervention, by virtue of newly-synthesized CSH gel — itself a product of the ongoing pozzolanic reaction.
Concrete (total cmt: 350 kg/m³) containing 40% Portland cement and 60% EMC Cement made from fly ash was used. Cracks of average width 150-200 μm were induced after ~3 weeks of water curing. This is depicted in PHOTO A.

Control cubes were tested for compressive strength at different ages.

As expected, without any intervention the high volume pozzolan concrete exhibited the gradual filling-in of the cracks with newly-synthesized CSH gel (a product of the ongoing pozzolanic reaction). These were completely filled-in after ~4.5 months. This is depicted in PHOTO B.

During the observation period, continuous strength-development was also recorded by virtue of the ongoing pozzolanic reaction. This, together with the observed "self healing" properties, both have a positive impact on concrete durability.

All photos courtesy of Dr. V. Ronin
An alternative fabrication technique EMC (Energetically Modified Cement) produces cementitious materials made from pozzolanic minerals that have been treated using a patented milling process ("EMC Activation").[13] The resultant concretes can have the same, if not improved, physical characteristics as "normal" concretes — at a fraction of the Portland cement. Note, although Energetically Modified Cement is able to replace Portland cement in concrete to high levels, it cannot fully replace it.
Energetically Modified Cement is better known as "EMC Cement". EMC Cement may be classified both as an "Alternative Cementitious Material" and as a "Supplemental Cementitious Material", on account of the range of the Portland cement replacement-ratios offered. Colloquially, EMC Cement may be referred-to also as a "Green Cement", on account of the significant energy and carbon dioxide savings yielded by EMC Activation as compared to Portland cement production.
The trade name for EMC Cement is "CemPozz". At the 45th World Exhibition of Invention, Research and Innovation, held in Bruxelles, Belgium, EMC Activation was awarded the Gold Medal "with mention" by the EUREKA Organisation (the pan-European research & development funding and coordination organization, comprising all 27 EU Member States). High Temperature Insulation

Put simply, EMC Activation is a patented, cost– and energy–efficient, near zero-emission technology for the high replacement of Portland cement in concrete.

Materials that are used to replace Portland cement in concrete (such as fly ash, blast furnace slag, natural pozzolans – e.g. volcanic ash – and silica sand) are mechanically activated in proprietary milling systems.EMC Activation increases the amount of Portland cement that can be replaced over and above "traditional" replacement methods (which typically replace an average of circa. 15% of the Portland Cement in concrete). By contrast, up to 70% of the Portland cement in concrete can be replaced using EMC Cement.
EMC Activation generates high-energy particle impacts. This leads to deep transformations in the particle micro-structure in the form of (among others) sub-micro cracks, dislocations and lattice defects that significantly increase reactivity, with no material increase in overall powder fineness.
EMC Cements comply with relevant normative standards and specifications. For example, where EMC Cement is made from fly ash, high Portland cement replacements (i.e., the replacement of at least 50% Portland cement) yield concretes that exhibit consistent field results.This is also the case for EMC Cement made from natural pozzolans (e.g., volcanic ash).

For example, volcanic ash deposits situated in Southern California of the United States were tested by independent consultants, according to the relevant normative standards. EMC Activation was then applied to the raw materials. At 50% Portland cement replacement, the resulting concretes exceeded the normative requirements. At 28 days, the compressive strength was recorded at 4,180 psi / 28.8 MPa (N/mm²). The 56-day strength exceeded the requirements for 4,500 psi (31.1 Mpa) concrete, even taking into account the safety margin as recommended by the American Concrete Institute.

EMC Cement presents dramatic savings both in terms of carbon dioxide and energy-savings. The figures vary slightly depending on the source material used. For example, if volcanic ash is used, the resulting compound has to be dried. This drying process consumes about 150,000 Btu per ton of EMC Cement produced.

All in all, as compared to a total energy consumption of ~1,000 to 1,400 KWh for each ton of Portland cement produced:
For each ton of EMC Cement made from fly ash, the energy requirement is usually ~25 KWh. There are no direct CO2 emissions.
For each ton EMC Cement made from volcanic ash, the energy requirement (including drying, as above) is no more than ~80KWh, with direct emissions of only 8 kgs CO2 per ton.

The performance of concretes made from EMC Cement can also be custom designed. Hence, concretes can range from those exhibiting superior strength and durability that reduce the carbon footprint at up to ~70% as compared to concretes made from Portland Cement, through to the production of rapid and ultra-rapid hardening, high-strength concretes (for example, over 70 MPa / 10,150 psi in 24 hours and over 200 MPa / 29,000 psi in 28 days).This allows EMC Cement to yield High Performance Concretes (HPCs).
EMC Cement exhibits a high resistance to chloride and sulfate ion attack, together with a low Alkali–Silica Reactivity (ASR).These features allow concretes made from EMC Cement to exhibit superior durabilities as compared to concretes made from Portland cement. For example, an early project using EMC Cement was the construction of a road bridge in Karungi, Sweden, with Swedish construction firm Skanska. The Karungi road bridge has successfully withstood the tests of time, despite Karungi's harsh subarctic climate and extremely divergent diurnal temperatures.

EMC Activation and EMC Cements are well-proven to an "industrial scale". In the United States, EMC Cement has been approved for usage by PennDOT (Pennsylvania Department of Transportation), TxDOT (Texas Department of Transportation) and CalTrans (California Department of Transportation). As a result, hundreds of miles of highway paving have been laid, together with assorted highway bridges, using concretes made from EMC Cement — including large sections of Interstate 10, which is the main U.S. Interstate highway linking Miami, Florida with Los Angeles, California.
Another notable project in the United States includes the extension of the passenger terminals at the Port of Houston, Texas. This project fully exploits EMC Cement's known propensity to yield concretes that exhibit high-resistances to chloride– and sulfate–ion permeability (i.e., increased resistance to sea waters), as compared to concretes made from Portland cement.

Modern cements
Modern hydraulic cements began to be developed from the start of the Industrial Revolution (around 1800),

driven by three main needs:
Hydraulic cement render (stucco) for finishing brick buildings in wet climates.
Hydraulic mortars for masonry construction of harbor works, etc., in contact with sea water.
Development of strong concretes.

In Britain particularly, good quality building stone became ever more expensive during a period of rapid growth, and it became a common practice to construct prestige buildings from the new industrial bricks, and to finish them with a stucco to imitate stone. Hydraulic limes were favored for this, but the need for a fast set time encouraged the development of new cements. Most famous was Parker's "Roman cement". This was developed by James Parker in the 1780s, and finally patented in 1796. It was, in fact, nothing like any material used by the Romans, but was a "Natural cement" made by burning septaria – nodules that are found in certain clay deposits, and that contain both clay minerals and calcium carbonate. The burnt nodules were ground to a fine powder. This product, made into a mortar with sand, set in 5–15 minutes. The success of "Roman Cement" led other manufacturers to develop rival products by burning artificial mixtures of clay and chalk.

John Smeaton made an important contribution to the development of cements when he was planning the construction of the third Eddystone Lighthouse (1755–9) in the English Channel. He needed a hydraulic mortar that would set and develop some strength in the twelve hour period between successive high tides. He performed an exhaustive market research on the available hydraulic limes, visiting their production sites, and noted that the "hydraulicity" of the lime was directly related to the clay content of the limestone from which it was made. Smeaton was a civil engineer by profession, and took the idea no further. Apparently unaware of Smeaton's work, the same principle was identified by Louis Vicat in the first decade of the nineteenth century. Vicat went on to devise a method of combining chalk and clay into an intimate mixture, and, burning this, produced an "artificial cement" in 1817. James Frost, working in Britain, produced what he called "British cement" in a similar manner around the same time, but did not obtain a patent until 1822. In 1824, Joseph Aspdin patented a similar material, which he called Portland cement, because the render made from it was in color similar to the prestigious Portland stone.

Setting time and "early strength" are important characteristics of cements. Hydraulic limes, "natural" cements, and "artificial" cements all rely upon their belite content for strength development. Belite develops strength slowly. Because they were burned at temperatures below 1250 °C, they contained no alite, which is responsible for early strength in modern cements. The first cement to consistently contain alite was made by Joseph Aspdin's son William in the early 1840s. This was what we call today "modern" Portland cement. Because of the air of mystery with which William Aspdin surrounded his product, others (e.g., Vicat and I.C. Johnson) have claimed precedence in this invention, but recent analysis[11] of both his concrete and raw cement have shown that William Aspdin's product made at Northfleet, Kent was a true alite-based cement. However, Aspdin's methods were "rule-of-thumb": Vicat is responsible for establishing the chemical basis of these cements, and Johnson established the importance of sintering the mix in the kiln.

William Aspdin's innovation was counterintuitive for manufacturers of "artificial cements", because they required more lime in the mix (a problem for his father), a much higher kiln temperature (and therefore more fuel), and the resulting clinker was very hard and rapidly wore down the millstones, which were the only available grinding technology of the time. Manufacturing costs were therefore considerably higher, but the product set reasonably slowly and developed strength quickly, thus opening up a market for use in concrete. The use of concrete in construction grew rapidly from 1850 onward, and was soon the dominant use for cements. Thus Portland cement began its predominant role.. High Temperature Cement

In the US the first large scale use of cement was Rosendale cement a natural cement mined from a massive deposit of a large dolostone rock deposit discovered in the early 19th century near Rosendale, New York. Rosendale cement was extremely popular for the foundation of buildings (e.g., Statue of Liberty, Capitol Building, Brooklyn Bridge) and lining water pipes. But its long curing time of at least a month made it unpopular after World War One in the construction of highways and bridges and many states and construction firms turned to the use of Portland cement. Because of the switch to Portland cement, by the end of the 1920s of the 15 Rosendale cement companies, only one had survived. But in the early 1930s it was soon discovered that, while Portland cement had a faster setting time it was not as durable, especially for highways, to the point that some states stopped building highways and roads with cement. High Temperature Insulation

 Bertrain H. Wait, an engineer whose company had worked on the construction of the New York Cities Catskill Aqueduct, was impressed with the durability of Rosendale cement, and came up with a blend of both Rosendale and synthetic cements which had the good attributes of both: it was highly durable and had a much faster setting time. Mr. Wait convinced the New York Commissioner of Highways to construct an experimental section of highway near New Paltz, New York, using one sack of Rosendale to six sacks of synthetic cement, and it was proved a success and for decades the Rosendale-synthetic cement blend became common use in highway and bridge construction.

Early uses

It is uncertain where it was first discovered that a combination of hydrated non-hydraulic lime and a pozzolan produces a hydraulic mixture (see also: Pozzolanic reaction), but concrete made from such mixtures was first used by the Ancient Macedonians and three centuries later on a large scale by Roman engineers. High Temperature Cement.

 They used both natural pozzolans (trass or pumice) and artificial pozzolans (ground brick or pottery) in these concretes. Many excellent examples of structures made from these concretes are still standing, notably the huge dome of the Pantheon in Rome and the massive Baths of Caracalla. The vast system of Roman aqueducts also made extensive use of hydraulic cement. High Temperature Insulation

Although any preservation of this knowledge in literary sources from the Middle Ages is unknown, medieval masons and some military engineers maintained an active tradition of using hydraulic cement in structures such as canals, fortresses, harbors, and shipbuilding facilities.The technical knowledge of making hydraulic cement was later formalized by French and British engineers in the 18th century.


For other uses, see Cement (disambiguation).
Not to be confused with Concrete.


Lafarge cement plant in Contes, France.
In the most general sense of the word, a cement is a binder, a substance that sets and hardens independently, and can bind other materials together. The word "cement" traces to the Romans, who used the term opus caementicium to describe masonry resembling modern concrete that was made from crushed rock with burnt lime as binder. The volcanic ash and pulverized brick additives that were added to the burnt lime to obtain a hydraulic binder were later referred to as cementum, cimentum, cäment, and cement. High Temperature Cement

Cement used in construction is characterized as hydraulic or non-hydraulic. Hydraulic cements (e.g., Portland cement) harden because of hydration, chemical reactions that occur independently of the mixture's water content; they can harden even underwater or when constantly exposed to wet weather. The chemical reaction that results when the anhydrous cement powder is mixed with water produces hydrates that are not water-soluble. Non-hydraulic cements (e.g. gypsum plaster) must be kept dry in order to retain their strength. High Temperature Insulation

The most important uses of cement are as an ingredient in the production of mortar in masonry, and of concrete, a combination of cement and an aggregate to form a strong building material.

Thursday, March 21, 2013



Mastic adhesive is made from the sticky resin of the mastic tree, which grows in the Mediterranean. Because of its sticky nature, it is used as a bonding agent in many commercial applications. Some types include construction adhesive, industrial adhesive, and ceramic tileadhesive. Depending on the application, the adhesive is available in thin liquid, thick glue, or paste form.
When used in construction, mastic adhesive is typically in liquid form and applied with a caulking gun. The adhesive is squeezed out by hand in a thin line along wall or ceiling joints. The strength of the adhesive helps hold load-bearing walls in place. In ceilings, the quick-setting adhesive eliminates the need to support heavy drywall for extended periods of time. Construction adhesive is also used as a temporary hold for fixtures so they can be nailed or screwed in place by one person.
Industrial uses for this adhesive include repairing duct work in the heating and air industry. This is due to its heat resistant properties and the ability to seal and form and a strong bond. The adhesive also bonds with most any material, so repairs to concrete, brick, or mortar are also possible. The adhesive for industrial uses comes in a finely ground powder that is mixed to form a paste. It is smeared onto the repair area and allowed to dry.

Wednesday, February 27, 2013

High-temperature superconductors (abbreviated high-Tc or HTS) are materials that behave as superconductors at unusually high temperatures. The first high-Tc superconductor was discovered in 1986 by IBM researchers Karl Müller and Johannes Bednorz, who were awarded the 1987 Nobel Prize in Physics "for their important break-through in the discovery of superconductivity in ceramic materials".

Whereas "ordinary" or metallic superconductors usually have transition temperatures (temperatures below which they superconduct) of about 30 K (−243.2 °C), HTS superconductors have been observed with transition temperatures as high as 138 K (−135 °C). Until recently, only certain compounds of copper and oxygen (so-called "cuprates") were believed to have HTS properties, and the term high-temperature superconductor was used interchangeably with cuprate superconductor for compounds such as bismuth strontium calcium copper oxide (BSCCO) and yttrium barium copper oxide (YBCO). However, several Iron based compounds (the Iron pnictides) are now known to be superconducting at high temperatures.

Thursday, January 31, 2013


History Of Adhesive

The oldest known adhesive, dated to approximately 200,000 BC, is from spear stone flakes glued to wood with birch-bark-tar, which was found in central Italy.[4] The use of compound glues to haft stone spears into wood dates back to approximately 70,000 BC. Evidence for this has been found in Sibudu Cave, South Africa and the compound glues used were made from plant gum and red ochre. The Tyrolean Iceman had weapons fixed together with the aid of birch-bark-tar glue.

6000-year-old ceramics show evidence of adhesives based upon animal glues made by rendering animal products such as horse teeth. During the times of Babylonia, tar-like glue was used for gluing statues. The Egyptians made much use of animal glues to adhere furniture, ivory, and papyrus. The Mongols also used adhesives to make their short bows, and the Native Americans of the eastern United States used a mixture of spruce gum and fat as adhesives to fashion waterproof seams in their birchbark canoes.

In medieval Europe, egg whites were used as glue to decorate parchments with gold leaf. The first actual glue factory was founded in Holland in the early 18th century. In the 1750s, the English introduced fish glue. As the modern world evolved, several other patented[clarification needed] materials, such as bones, starch, fish skins and isinglass, and casein, were introduced as alternative materials for glue manufacture. Modern glues have improved flexibility, toughness, curing rate, and chemical resistance.

In the late 19th century in Switzerland, casein was first used as a wood glue. Today, it is used to glue grocery bags.

An adhesive, also known as glue, is a material, typically liquid or semi-liquid, that adheres or bonds items together. Adhesives come from either natural or synthetic sources. The types of materials that can be bonded are vast but adhesives are especially useful for bonding thin materials. Adhesives cure (harden) by either evaporating a solvent or by chemical reactions that occur between two or more constituents.
Adhesives are useful for joining thin or dissimilar materials, minimizing weight, and providing a vibration-damping joint. A disadvantage of most adhesives is that most do not form an instantaneous joint, unlike many other joining processes, because the adhesive needs time to cure.
The earliest known date for a simple glue is 200,000 BC and for a compound glue 70,000 BC.

Tuesday, January 22, 2013

Mesh
       Mesh consists of semi-permeable barrier made of connected strands of metal, fiber, or other flexible/ductile material. Mesh is similar to web or net in that it has many attached or woven strands Types of mesh A plastic mesh is extruded, oriented, expanded or tubular. Plastic mesh can be made from polypropylene, polyethylene, nylon, PVC or PTFE. A metal mesh can be woven, knitted, welded, expanded, photo-chemically etched or electroformed (screen filter) from steel or other metals.In clothing, a mesh is often defined as a loosely woven or knitted fabric that has a large number of closely spaced holes, frequently used for modern sports jerseys and other clothing. A mesh skin graft is a skin patch that has been cut systematically to create a mesh. Meshing of skin grafts provides coverage of a greater surface area at the recipient site, and also allows for the egress of serous or sanguinous fluid. However, it results in a rather pebbled appearance upon healing that may ultimately look less aesthetically pleasing. Uses of meshes Meshes are often used to screen out unwanted things, such as insects. Wire screens on windows and mosquito netting can be considered as types of meshes. Wire screens can be used to shield against radio frequency radiation, e.g. in microwave ovens and Faraday cages. Metal and nylon wire mesh filters are used in filtration Wire mesh is used in guarding for secure areas and as protection in the form of vandal screens. Wire mesh can be fabricated to produce park benches, waste baskets and other baskets for material handling. A huge quantity of mesh is being used for screen printing work. Surgical mesh is used to provide a reinforcing structure in surgical procedures like inguinal hernioplasty, and umbilical hernia repair. Meshes are also used as drum heads in practice and electronic drum sets.
High temperature insulation Calcium silicate
    Calcium silicate (often referred to by its shortened trade name Cal-Sil or Calsil) is the chemical compound Ca2SiO4, also known as calcium orthosilicate and sometimes formulated 2CaO.SiO2. It is one of group of compounds obtained by reacting calcium oxide and silica in various ratios[3] e.g. 3CaO•SiO2, Ca3SiO5; 2CaO•SiO2, Ca2SiO4; 3CaO•2SiO2, Ca3Si2O7 and CaO•SiO2, CaSiO3. Calcium orthosilicate is a white powder with a low bulk density and high physical water absorption. It is used as an anti-caking agent and an antacid. A white free-flowing powder derived from limestone and diatomaceous earth, calcium silicate has no known adverse effects to health[citation needed]. It is used in roads, insulation, bricks, roof tiles, table salt[4] and occurs in cements, where it is known as belite (or in cement chemist notation C2S).


High temperature insulation
   Calcium silicate is commonly used as a safe alternative to asbestos for high temperature insulation materials. Industrial grade piping and equipment insulation is often fabricated from calcium silicate. Its fabrication is a routine part of the curriculum for insulation apprentices. Calcium silicate competes in these realms against rockwool as well as proprietary insulation solids, such as perlite mixture and vermiculite bonded with sodium silicate. Although it is popularly considered an asbestos substitute, early uses of calcium silicate for insulation still made use of asbestos fibers.
Natural adhesives
      Natural adhesives are made from organic sources such as vegetable matter, starch (dextrin), natural resins or from animals e.g. casein or animal glue. They are often referred to as bioadhesives. One example is a simple paste made by cooking flour in water. Animal glues are traditionally used in bookbinding, wood joining, and many other areas but now are largely replaced by synthetic glues. Casein is mainly used to adhere glass bottle labels. Starch based adhesives are used in corrugated board production and paper sack production, paper tube winding, and wall paper adhesives. Masonite, a wood hardboard, was bonded using natural lignin, (although most modern MDF particle boards use synthetic thermosetting resins). Another form of natural adhesive is blood albumen (made from protein component of blood), which is used in the plywood industry. Animal glue remains the preferred glue of the luthier. Casein based glues are made by precipitating casein from milk protein using the acetic acid from vinegar. This forms curds, which are neutralized with a base, such as sodium bicarbonate (baking soda), to cause them to unclump and become a thicker plastic-like substance
Synthetic adhesives
     Synthetic adhesives are based on elastomers, thermoplastics, emulsions, and thermosets. Examples of thermosetting adhesives are: epoxy, polyurethane, cyanoacrylate and acrylic polymers. See also post-it notes. The first commercially produced synthetic adhesive was Karlsons klister in the 1920s.

Friday, October 12, 2012


Aluminium ( /ˌæljuːˈmɪniəm/ al-ew-min-ee-əm) or aluminum (American English;  /əˈluːmɪnəm/ ə-loo-mi-nəm) is a chemical element in the boron group with symbol Al and atomic number 13. It is silvery white, and it is not soluble in water under normal circumstances.
Aluminium is the third most abundant element (after oxygen and silicon), and the most abundant metal, in the Earth's crust. It makes up about 8% by weight of the Earth's solid surface. Aluminium metal is so chemically reactive that native specimens are rare and limited to extreme reducing environments. Instead, it is found combined in over 270 different minerals.[6] The chief ore of aluminium is bauxite.
Aluminium is remarkable for the metal's low density and for its ability to resist corrosion due to the phenomenon of passivation. Structural components made from aluminium and its alloys are vital to the aerospace industry and are important in other areas of transportation and structural materials. The most useful compounds of aluminium, at least on a weight basis, are the oxides and sulfates.
Despite its prevalence in the environment, aluminium salts are not known to be used by any form of life. In keeping with its pervasiveness, aluminium is well tolerated by plants and animals.[7] Owing to their prevalence, potential beneficial (or otherwise) biological roles of aluminium

Wednesday, July 11, 2012


          Building insulation refers broadly to any object in a building used as insulation for any purpose. While the majority of insulation in buildings is forthermal purposes, the term also applies to acoustic insulationfire insulation, and impact insulation (e.g. for vibrations caused by industrial applications). Often an insulation material will be chosen for its ability to perform several of these functions at once.


Thank for Info : http://en.wikipedia.org

         Silicon nitride has long been used in high-temperature applications. In particular, it was identified as one of the few monolithic ceramic materials capable of surviving the severe thermal shock and thermal gradients generated in hydrogen/oxygen rocket engines. To demonstrate this capability in a complex configuration, NASA scientists used advanced rapid prototyping technology to fabricate a one-inch-diameter, single-piece combustion chamber/nozzle (thruster) component. The thruster was hot-fire tested with hydrogen/oxygen propellant and survived five cycles including a 5-minute cycle to a 1320 °C material temperature.

Thank for Info : http://en.wikipedia.org

Monday, July 9, 2012

          fire brickfirebrick, or refractory brick is a block of refractory ceramic material used in lining furnaceskilnsfireboxes, and fireplaces. A refractory brick is built primarily to withstand high temperature, but will also usually have a low thermal conductivity for greater energy efficiency. Usually dense firebricks are used in applications with extreme mechanical, chemical, or thermal stresses, such as the inside of a wood-fired kiln or a furnace, which is subject to abrasion from wood, fluxing from ash or slag, and high temperatures. In other, less harsh situations, such as in an electric or natural gas fired kiln, more porous bricks, commonly known as "kiln bricks" are a better choice. They are weaker, but they are much lighter, easier to form, and insulate far better than dense bricks. In any case, firebricks should not spall under rapid temperature change, and their strength should hold up well during rapid temperature changes.


Thank for Info : http://en.wikipedia.org
          Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials sciencemetallurgy and engineering. The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period (niobium andmolybdenum) and three of the sixth period (tantalumtungsten, and rhenium). They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They are chemically inert and have a relatively high density. Their high melting points make powder metallurgy the method of choice for fabricatingcomponents from these metals. Some of their applications include tools to work metals at high temperatures, wire filaments, casting molds, and chemical reaction vessels in corrosive environments. Partly due to the high melting point, refractory metals are stable against creep deformation to very high temperatures.


Thank for Info : http://en.wikipedia.org

Sunday, July 8, 2012

Oil shale

          Oil shale, also known as kerogen shale, is an organic-rich fine-grained sedimentary rock containing kerogen (a solid mixture of organic chemical compounds) from which liquid hydrocarbons called shale oil (not to be confused with tight oil—crude oil occurring naturally in shales) can be produced. Shale oil is a substitute for conventional crude oil; however, extracting shale oil from oil shale is more costly than the production of conventional crude oil both financially and in terms of its environmental impact. Deposits of oil shale occur around the world, including major deposits in the United States of America. Estimates of global deposits range from 2.8 to 3.3 trillion barrels (450×109 to 520×109 m3) of recoverable oil.
          Heating oil shale to a sufficiently high temperature causes the chemical process of pyrolysis to yield a vapor. Upon cooling the vapor, the liquid shale oil—an unconventional oil—is separated from combustible oil-shale gas (the term shale gas can also refer to gas occurring naturally in shales). Oil shale can also be burnt directly in furnaces as a low-grade fuel for power generation and district heating or used as a raw material in chemical and construction-materials processing.
          Oil shale gains attention as a potential abundant source of oil whenever the price of crude oil rises. At the same time, oil-shale mining and processing raise a number of environmental concerns, such as land use, waste disposal, water use, waste-water management, greenhouse-gas emissions and air pollution. Estonia and China have well-established oil shale industries, and Brazil, Germany, Russia also utilize oil shale.
          Oil shales differ from oil-bearing shales, shale deposits which contain petroleum (tight oil) that is sometimes produced from drilled wells. Examples of oil-bearing shales are the Bakken Formation, Pierre Shale, Niobrara Formation, and Eagle Ford Formation.

Thank for Info : http://en.wikipedia.org

          All refractory require anchorage systems such as wire formed anchors, formed metal (for example, hexmetal) or ceramic tiles to support the refractory linings. The anchorage used for refractory on roofs and vertical walls are more critical as they must remain able to support the weight of refractory even at the elevated temperatures and operating conditions.
          The commonly used anchorages have circular or rectangular cross-section. Circular cross-section are used for low thickness refractory and they support less weight per unit area; whereas the rectangular cross-section is used for high thickness refractory and can support higher weight of refractory per unit area. The number of anchors to be used depend on the operating conditions and the refractory materials. The choice of anchors material, shape, numbers and size has significant impact on the useful life of the refractory

Thank for Info : http://en.wikipedia.org

Thursday, July 5, 2012


          A furnace is a device used for heating. The name derives from Latin fornax, oven.
In American English and Canadian English, the term furnace on its own is generally used to describe household heating systems based on a central furnace (known either as a boiler or a heater in British English), and sometimes as a synonym for kiln, a device used in the production of ceramics. InBritish English the term furnace is used exclusively to mean industrial furnaces which are used for many things, such as the extraction of metal from ore(smelting) or in oil refineries and other chemical plants, for example as the heat source for fractional distillation columns.
          The term furnace can also refer to a direct fired heater, used in boiler applications in chemical industries or for providing heat to chemical reactions for processes like cracking, and is part of the standard English names for many metallurgical furnaces worldwide.
The heat energy to fuel a furnace may be supplied directly by fuel combustion, by electricity such as the electric arc furnace, or through induction heatingin induction furnaces.

Thank for Info : http://en.wikipedia.org